Notes: Journal titles link to abstracts on the journal’s server; full articles can be obtained with the subscription; we also provide links to free ArXiv versions. In some cases, where allowed by the publisher, we also provide the full text of articles. For example, AIP articles are subject to the following:


Copyright (year) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.


Fundamental symmetry tests: reviews and proposals

Gamma Factory; relativistic ions

  • Dmitry Budker, José R. Crespo López-Urrutia, Andrei Derevianko, Victor V. Flambaum, Mieczyslaw Witold Krasny, Alexey Petrenko, Szymon Pustelny, Andrey Surzhykov, Vladimir A. Yerokhin, and Max Zolotorev, Atomic physics studies at the Gamma Factory at CERN, Annalen der Physik,; arXiv:2003.03855 (2020)

  • Gamma Factory Proof-of-Principle Experiment, Letter of Intent, CERN-SPSC-2019-031 / SPSC-I-253
  • W. Placzek, A. Abramov, S.E. Alden, R. Alemany Fernandez, P.S. Antsiferov, A. Apyan, H. Bartosik, E.G. Bessonov, N. Biancacci, J. Bieron, A. Bogacz, A. Bosco, R. Bruce, D. Budker, K. Cassou, F. Castelli, I. Chaikovska, C. Curatolo, P. Czodrowski, A. Derevianko, K. Dupraz, Y. Dutheil, K. Dzierzega, V. Fedosseev, N. Fuster Martinez, S.M. Gibson, B. Goddard, A. Gorzawski, S. Hirlander, J. Jowett, R. Kersevan, M. Kowalska, M.W. Krasny, F. Kroeger, M. Lamont, T. Lefevre, D. Manglunki, B. Marsh, A. Martens, J. Molson, D. Nutarelli, L.J. Nevay, A. Petrenko, V. Petrillo, S. Radaelli, S. Pustelny, S. Rochester, M. Sapinski, M. Schaumann, L. Serafini, V.P. Shevelko, T. Stoehlker, A. Surzhikov, I. Tolstikhina, F. Velotti, G. Weber, Y.K. Wu, C. Yin-Vallgren, M. Zanetti, F. Zimmermann, M.S. Zolotorev, F. Zomer, Gamma Factory at CERN – novel research tools made of light, Acta Phys. Pol. B 50, 1191 (2019);  arXiv:1903.09032
  • M. Zolotorev and D. Budker, Prospects for Measuring Parity Nonconservation in Hydrogenic Ions Using High-Energy Accelerators, “Parity Violation in Atoms and Electron Scattering” B. Frois and M. A. Bouchiat, eds., World Scientific, 1999, p. 364.
  • M. Zolotorev and D. Budker, Parity Nonconservation in Relativistic Hydrogenic Ions, Phys. Rev. Lett., 78(25), 4717 (1997).

Parity nonconservation; searches for variation of alpha, Lorentz-invariance violation, equivalence-principle violation, laser cooling, and related physics in dysprosium

  • Ken Van Tilburg, Nathan Leefer, Lykourgos Bougas, and Dmitry Budker, Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett. 115, 011802 (2015), arXiv:1503.06886
  • N. Leefer, L. Bougas, D. Antypas, and D. Budker, Towards a new measurement of parity violation in dysprosium, arXiv:1412.1245
  • B. M. Roberts, Y. V. Stadnik, V. A. Dzuba, V. V. Flambaum, N. Leefer, and D. Budker, Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting limits; Phys. Rev. D 90, 096005 (2014), arXiv:1409.2564
  • B. M. Roberts, Y. V. Stadnik, V. A. Dzuba, V. V. Flambaum, N. Leefer, and D. Budker, Limits on P-odd interactions of cosmic fields with electrons, protons and neutrons, Phys. Rev. Lett. 113, 081601 (2014); arXiv:1404.2723
  • C.T.M. Weber, N. Leefer, and D. Budker, Investigation of ac-Stark shifts in excited states of dysprosium relevant to testing fundamental symmetries, Phys. Rev. A 88, 062503 (2013) (arXiv:1308.2391)
  • Nathan Leefer and Michael A. Hohensee, An odd (parity) test of Lorentz symmetry with atomic dysprosium; (arXiv:1307.6762)
  • M. A. Hohensee, N. Leefer, and D. Budker, C. Harabati, V. A. Dzuba, and V. V. Flambaum, Limits on Violations of Lorentz Symmetry and the Einstein Equivalence Principle using Radio-Frequency Spectroscopy of Atomic Dysprosium, Phys. Rev. Lett. 111(5), 050401 (2013) (arXiv:1303.2747)
  • N. Leefer, C. T. M. Weber, A. Cingöz, J. R. Torgerson, D. Budker, New limits on variation of the fine-structure constant using atomic dysprosium; Phys. Rev. Lett. 111(6), 060801 (2013) (arXiv:1304.6940); Raw Data
  • N. Leefer, A. Cingöz, B. Gerber-Siff, Arijit Sharma, J. R. Torgerson, and D. Budker, Transverse laser cooling of a thermal atomic beam of dysprosium, Phys. Rev. A81(4), 043427 (2010) (arXiv:0912.2133)
  • N. A. Leefer, A. Cingöz, and D. Budker, Measurement of hyperfine structure and isotope shifts in the Dy 421-nm transition, Optics Letters34(17), 2548-2550 (2009) (arXiv:0904.1438)
  • N. A. Leefer, A. Cingöz, D. Budker, S. J. Ferrell, V. V. Yashchuk, A. Lapierre, A.-T. Nguyen, S. K. Lamoreaux, J. R. Torgerson, Variation of the Fine-Structure Constant and Laser Cooling of Atomic Dysprosium, in Proceedings of the 7th Symposium: Frequency Standards and Metrology, Asilomar, October 2008; Lute Maleki, Ed., World Scientific, pp. 34-43; arXiv:0811.3992
  • A. Cingöz, N.A. Leefer, S.J. Ferrell, A. Lapierre, A.-T. Nguyen, V. V. Yashchuk, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, A laboratory search for variation of the fine-structure constant using atomic dysprosium, Eur. Phys. J. Special Topics163, 71-88 (2008).
  • S. J. Ferrell, A. Cingoz, A. Lapierre, A.-T. Nguyen, N. Leefer, D. Budker, V. V. Flambaum, S. K. Lamoreaux, and J. R. Torgerson, Investigation on the Gravitational Potential Dependence of the Fine-Structure Constant Using Atomic Dysprosium, Phys. Rev. A76(6), 062104 (2007) (arXiv:0708.0569)
  • A. Cingoz, A. Lapierre, A.-T. Nguyen, N. Leefer, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Limit on the Temporal Variation of the Fine-Structure Constant Using Atomic Dysprosium, Phys. Rev. Lett.98, 040801 (2007) (physics/0609014)
  • A. Cingoz, A.-T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium, Phys. Rev. A72, 063409 (2005) (physics/0508148)
  • A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium, Phys. Rev. A69, 022105 (2004) (physics/0308104)
  • A.-T. Nguyen, G. D. Chern, D. Budker, and M. Zolotorev, Efficient population transfer in a multi-level system, Phys. Rev. A. 63, 013406 (2001).
  • A.-T. Nguyen, D.E. Brown, D. Budker, D. DeMille, D.F. Kimball, and M. Zolotorev, Search for PNC in Atomic Dysprosium, “Parity Violation in Atoms and Electron Scattering”, B. Frois and M. A. Bouchiat, eds., World Scientific, 1999, p. 295.
  • A.-T. Nguyen, D. Budker, D. DeMille, and M. Zolotorev, Search for parity nonconservation in atomic dysprosium, Phys. Rev. A56(5), 3453-63 (1997).
  • D. Budker, D. DeMille, E.D. Commins, and M.S. Zolotorev, Experimental investigation of excited states in atomic dysprosium, Phys. Rev. A50, 132-143 (1994).
  • D. DeMille, D. Budker, E. Commins, and M. Zolotorev, Nearly-Degenerate Opposite-Parity Levels in Atomic Dysprosium: A Novel System for the Study of Parity Non-Conservation, Moriond Workshop, 1994 (Word).
  • Dmitry Budker, Eugene D. Commins, David DeMille, and Max S. Zolotorev, Laser spectroscopy and lifetime measurements of Dy I states, Optics Letters16(19), 1514-1516 (1991).

Parity nonconservation and related physics in ytterbium

Parity nonconservation in molecules; molecular chirality

  • Jim C. Visschers, Oleg Tretiak, Dmitry Budker, Lykourgos Bougas, Continuous-Wave Cavity Ring-Down Polarimetry, Journal of Chemical Physics 152(16) (2020), arXiv:2002.04538
  • John W. Blanchard, Jonathan P. King, Tobias F. Sjolander, Mikhail G. Kozlov, and Dmitry Budker, Parity Nonconserving Nuclear Spin Coupling in Molecules, Phys. Rev. Research 2, 023258 (2020); arXiv:1710.06819
  • James Eills, John W. Blanchard, Lykourgos Bougas, Mikhail G. Kozlov, Alexander Pines, and Dmitry Budker, Measuring molecular parity nonconservation using nuclear magnetic resonance spectroscopy, Phys. Rev. A 96, 042119 (2017), arXiv:1707.01759

Investigation of anti-relaxation coated cells for magnetometers, atomic clocks, etc.; Light-Induced atomic desorption

  • Runqi Han, Mikhail Balabas, Chris Hovde, Wenhao Li, Hector Masia Roig, Tao Wang, Arne Wickenbrock, Elena Zhivun, Zheng You, and Dmitry Budker, Is light narrowing possible with dense-vapor paraffin coated cells for atomic magnetometers? AIP Advances 7, 125224 (2017)
  • Wenhao Li, Xiang Peng, Dmitry Budker, Arne Wickenbrock, Bo Pang, Rui Zhang, and Hong Guo, Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell, Optics Letters 42(20), 4163-4166 (2017), arXiv:1708.08605
  • Wenhao Li, Mikhail Balabas, Xiang Peng, Szymon Pustelny, Arne Wickenbrock, Hong Guo, and Dmitry Budker, Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating, J. Appl. Phys. 121, 063104 (2017); doi: 10.1063/1.4976017, arXiv:1609.04867
  • O. Yu. Tretiak, J. W. Blanchard, D. Budker, P. K. Olshin, S. N. Smirnov, and M. V. Balabas, Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating, J. Chem. Phys. 144, 094707 (2016); arXiv:1601.07573
  • A. M. Hibberd, S. J. Seltzer, M. V. Balabas, M. Morse, D. Budker, and S. L. Bernasek, Light-induced changes in an alkali metal atomic vapor cell coating studied by X-ray photoelectron spectroscopy, J. Appl. Phys. 114, 094513 (2013)
  • Eric P. Corsini, Todor Karaulanov, Mikhail Balabas, and Dmitry Budker, Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating, Phys. Rev. A 87, 022901 (2013).
  • Mikhail V. Balabas, Todor Karaulanov, Micah P. Ledbetter, and Dmitry Budker, Polarized alkali vapor with minute-long transverse spin-relaxation time, Phys. Rev. Lett. 105, 070801 (2010), arXiv:1005.1617
  • V. M. Acosta, A. Jarmola, D. Windes, E. Corsini, M. P. Ledbetter, T. Karaulanov, M. Auzinsh, S. A. Rangwala, D. F. Jackson Kimball, and D. Budker, Rubidium dimers in paraffin-coated cells, New Journal of Physics12 (2010) 083054 (2010); arXiv:1005.0215
  • S. J. Seltzer, D. J. Michalak, M. H. Donaldson, M. V. Balabas, S. K. Barber, S. L. Bernasek, M.-A. Bouchiat, A. Hexemer, A. M. Hibberd, D. F. Jackson Kimball, C. Jaye, T. Karaulanov, F. A. Narducci, S. A. Rangwala, H. G. Robinson, A. K. Shmakov, D. L. Voronov, V. V. Yashchuk, A. Pines, and D. Budker, Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques, J. Chem. Phys. 133, 144703 (2010); arXiv:1002.4417
  • D. F. Jackson Kimball, Khoa Nguyen, K. Ravi, Arijit Sharma, Vaibhav S. Prabhudesai, S. A. Rangwala, V. V. Yashchuk, M. V. Balabas, and D. Budker, Electric-field-induced change of alkali-metal vapor density in paraffin-coated cells, Phys. Rev. A 79, 032901 (2009); arXiv:0812.4959
  • T. Karaulanov, M. T. Graf, D. English, S. M. Rochester, Y. Rosen, K. Tsigutkin, D. Budker, M. V. Balabas, D. F. Jackson Kimball, F. A. Narducci, S. Pustelny, V. V. Yashchuk, Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption, Phys. Rev. A79, 012902 (2009); arXiv:0806.0663
  • J. S. Guzman, A. Wojciechowski, J. E. Stalnaker, K. Tsigutkin, V. V. Yashchuk, D. Budker, Nonlinear magneto-optical rotation, Zeeman and hyperfine relaxation of potassium atoms in a paraffin-coated cell, Phys. Rev. A 74(5) 053415 (2006); physics/0607061
  • M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, M. V. Balabas, and V. V. Yashchuk, Relaxation of atomic polarization in paraffin-coated cesium vapor cells, Phys. Rev. A72, 023401 (2005); physics/0503202
  • D. Budker, L. Hollberg, D. F. Kimball, J. Kitching, S. Pustelny, and V. V. Yashchuk, Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells, Phys. Rev. A71, 012903 (2005); physics/0408009
  • E. B. Alexandrov, M. V. Balabas, D. Budker, D. S. English, D.F. Kimball, C.-H. Li, and V.V. Yashchuk, Light-Induced Desorption of Alkali Atoms from Paraffin Coating, Phys. Rev. A66, 042903 (2002); erratum: Phys. Rev. A 70, e049902 (2004); physics/0406154

Applied magnetometry

  • Review article: Kai-Mei C. Fu, G. Z. Iwata, Arne Wickenbrock, and Dmitry Budker, Sensitive magnetometry in challenging environments, arXiv:2008.00082 (2020)

  • Yinan Hu, Geoffrey Z. Iwata, Mohaddese Mohammadi, Emilia V. Silletta, Arne Wickenbrock, John W. Blanchard, Dmitry Budker, and Alexej Jerschow, Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells, PNAS (2020); arXiv:1905.12507

Nonlinear magneto- and electro-optics; atomic magnetometry

Detection of magnetic microparticles

  • Lykourgos Bougas, Lukas D. Langenegger, Carlos A. Mora, Martin Zeltner, Wendelin J. Stark, Arne Wickenbrock, John W. Blanchard, and Dmitry Budker, Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids, Scientific Reports v. 8, Article number: 3491 (2018), arXiv:1801.0566
  • D. Maser, S. Pandey, H. Ring, M. P. Ledbetter, S. Knappe, J. Kitching, and D. Budker, Detection of a single cobalt microparticle with a microfabricated atomic magnetometer, Rev. Sci. Instr. 82, 086112 (2011) (ArXiv:1107.1913)
  • S. Xu, M. H. Donaldson, A. Pines, S. M. Rochester, D. Budker, and V. V. Yashchuk, Application of atomic magnetometry in magnetic particle detection, Appl. Phys. Lett. 89, 224105 (2006); physics/0609197; this paper is also available from the Virtual Journal of Nanoscale Science and Technology

New cooling techniques, STIRAP

  • Klaas Bergmann, Hanns-Christoph Nägerl, Cristian Panda, Gerald Gabrielse, Eduard Miloglyadov, Martin Quack, Georg Seyfang, Gunther Wichmann, Silke Ospelkaus, Axel Kuhn, Stefano Longhi, Alexander Szameit, Philipp Pirro, Burkard Hillebrands, Xue-Feng Zhu, Jie Zhu, Michael Drewsen, Winfried K Hensinger, Sebastian Weidt, Thomas Halfmann, Hai-Lin Wang, Gheorghe Sorin Paraoanu, Nikolay V Vitanov, Jordi Mompart, Thomas Busch, Timothy J Barnum, David D Grimes, Robert W Field, Mark G Raizen, Edvardas Narevicius, Marcis Auzinsh, Dmitry Budker, Adriana Pálffy and Christoph H Keitel, Roadmap on STIRAP applications, J. Phys. B: At. Mol. Opt. Phys. 52 202001 (2019).
  • N. Petersen, F. Mühlbauer, L. Bougas, A. Sharma, D. Budker, and P. Windpassinger, Sawtooth-wave adiabatic-passage slowing of dysprosium, Phys. Rev. A99, 063414 (2019); arXiv:1809.06423
  • Simon Rochester, Konrad Szymanski, Mark Raizen, Szymon Pustelny, Marcis Auzinsh, and Dmitry Budker, Efficient polarization of high-angular-momentum systems, Phys. Rev. A 94, 043416 (2016), arXiv:1608.08692
  • Simon Rochester, Szymon Pustelny, Konrad Szymanski, Mark Raizen, Marcis Auzinsh, and Dmitry Budker, Efficient polarization of high-angular-momentum systems, Proc. SPIE 9763, Slow Light, Fast Light, and Opto-Atomic Precision Metrology IX, 97630D (March 8, 2016); doi:10.1117/12.2220208
  • Mark G. Raizen, Dmitry Budker, Simon Rochester, Julia Narevicius, Edvardas Narevicius, Magneto-Optical Cooling of Atoms, Optics Letters 39(15), 4502–4505 (2014); arXiv:1309.5733

Ion Traps, Thorium, Antimatter

  • Raphael Haas, Tom Kieck, Dmitry Budker, Christoph E. Düllmann, Karin Groot-Berning, Wenbing Li, Dennis Renisch, Ferdinand Schmidt-Kaler, Felix Stopp, and Anna Viatkina, Development of a recoil ion source providing slow Th ions including 229(m)Th in a broad charge state distribution, Hyperfine Interactions (2020) 241:25; arXiv:1911.11674
  • Felix Stopp, Karin Groot-Berning, Georg Jacob, Dmitry Budker, Raphael Haas, Dennis Renisch, Jörg Runke, Petra Thörle-Pospiech, Christoph E. Düllmann, and Ferdinand Schmidt-Kaler, Catching, trapping and in-situ identification of thorium ions inside Coulomb crystals of 40Ca+ ions, Hyperfine Interact (2019) 240: 33
  • Karin Groot-Berning, Felix Stopp, Georg Jacob, Dmitry Budker, Raphael Haas, Dennis Renisch, Jörg Runke, Petra Thörle-Pospiech, Christoph Düllmann, and Ferdinand Schmidt-Kaler, Trapping and sympathetic cooling of single thorium ions for spectroscopy, Phys. Rev. A99, 023420 (2019); arXiv:1807.05975
  • Nathan Leefer, Kai Krimmel, William Bertsche, Dmitry Budker, Joel Fajans, Ron Folman, Hartmut Häffner, and Ferdinand Schmidt-Kaler, Investigation of two-frequency Paul traps for antihydrogen production, Hyperfine Interactions, 238(1), 1-18 (2016), DOI 10.1007/s10751-016-1388-0, arXiv:1603.09444

Cosmic Axion Spin-Precession Experiment (CASPEr)

  • Antoine Garcon, John W. Blanchard, Gary P. Centers, Nataniel L. Figueroa, Peter W. Graham, Derek F. Jackson Kimball, Surjeet Rajendran, Alexander O. Sushkov, Yevgeny V. Stadnik, Arne Wickenbrock, Teng Wu, and Dmitry Budker, Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance, Sci. Adv. 2019 5: eaax4539, arXiv:1902.04644
  • Teng Wu, John W. Blanchard, Gary Centers, Nataniel L. Figueroa, Antoine Garcon, Peter W. Graham, Derek F. Jackson Kimball, Surjeet Rajendran, Yevgeny V. Stadnik, Alexander O. Sushkov, Arne Wickenbrock, and Dmitry Budker, Search for axionlike dark matter with nuclear spins in a single-component liquid, Phys. Rev. Lett. 122, 191302 (2019); arXiv:1901.10843
  • D. F. Jackson Kimball, S. Afach, D. Aybas, J. W. Blanchard, D. Budker, G. Centers, M. Engler, N. L. Figueroa, A. Garcon, P. W. Graham, H. Luo, S. Rajendran, M. G. Sendra, A. O. Sushkov, T. Wang, A. Wickenbrock, A. Wilzewski, and T. Wu, Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), arXiv:1711.08999
  • Antoine Garcon, Deniz Aybas, John W. Blanchard, Gary Centers, Nataniel L. Figueroa, PeterW. Graham, Derek F. Jackson Kimball,Surjeet Rajendran, Marina G. Sendra, Alexander O. Sushkov, Lutz Trahms, Tao Wang, Arne Wickenbrock, Teng Wu, and Dmitry Budker, The Cosmic Axion Spin Precession Experiment (CASPEr): a dark-matter search with nuclear magnetic resonance, Quantum Science and Technology3(1), 014008 (2017), arXiv:1707.05312
  • Tao Wang, Derek F. Jackson Kimball, Alexander O. Sushkov, Deniz Aybas, John W. Blanchard, Gary Centers, Sean R. O’Kelley, Arne Wickenbrock, Jiancheng Fang, and Dmitry Budker, Application of Spin-Exchange Relaxation-Free Magnetometry to the Cosmic Axion Spin Precession Experiment, Physics of the Dark Universe (2017); arXiv:1701.08082
  • Dmitry Budker, Peter W. Graham, Micah Ledbetter, Surjeet Rajendran, and Alex Sushkov, Cosmic Axion Spin Precession Experiment (CASPEr), PHYSICAL REVIEW X 4, 021030 (2014); arXiv:1306.6089

Global Network of Optical Magnetometers for Exotic physics searches (GNOME)

  • Dmitry Budker, Derek Jackson Kimball, and Szymon Pustelny, Sensing a passage through  the unknown, CERN Courier 60(4), 25-28 (July-August 2020)

  • Conner Dailey, Colin Bradley, Derek F. Jackson Kimball, Ibrahim Sulai, Szymon Pustelny, Arne Wickenbrock, Andrei Derevianko, Quantum sensor networks as exotic field telescopes for multi-messenger astronomy, arXiv:2002.04352 (2020)

  • Hector Masia-Roig, Joseph A. Smiga, Dmitry Budker, Vincent Dumont, Zoran Grujic, Dongok Kim, Derek F. Jackson Kimball, Victor Lebedev, Madeline Monroy, Szymon Pustelny, Theo Scholtes, Perrin C. Segura, Yannis K. Semertzidis, Yun Chang Shin, Jason E. Stalnaker, Ibrahim Sulai, Antoine Weis, and Arne Wickenbrock, Analysis method for detecting topological defect dark matter with a global magnetometer network, Physics of the Dark Universe
    28, May 2020, 100494; arXiv:1912.08727
  • S. Afach, D. Budker, G. DeCamp, V. Dumont, Z. D. Grujić, H. Guo, D. F. Jackson Kimball, T. W. Kornack, V. Lebedev, W. Li, H. Masia-Roig, S. Nix, M. Padniuk, C. A. Palm, C. Pankow, A. Penaflor, X. Peng, S. Pustelny, T. Scholtes, J. A. Smiga, J. E. Stalnaker, A. Weis, A. Wickenbrock, D. Wurm, Characterization of the Global Network of Optical Magnetometers to search for Exotic Physics (GNOME), Physics of the Dark Universe 22, 162-180 (2018), arXiv:1807.09391
  • D. F. Jackson Kimball, D. Budker, J. Eby, M. Pospelov, S. Pustelny, T. Scholtes, Y. V. Stadnik, A. Weis, and A. Wickenbrock, Searching for axion stars and Q-balls with a terrestrial magnetometer network, Phys. Rev. D 97, 043002 (2018), arXiv:1710.04323
  • S. Pustelny, D. F. Jackson Kimball, C. Pankow, M. P. Ledbetter, P. Wlodarczyk, P. Wcislo, M. Pospelov, J. Smith, J. Read, W. Gawlik, and D. Budker, Global Network of Optical Magnetometers for Exotic Physics: Novel scheme for exotic physics searches; Annalen der Physik 525(8-9), 659–70 (2013); DOI: 10.1002/andp.201300061  (arXiv:1303.5524)
  • M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. Jackson Kimball, W. Gawlik, and D. Budker, Detecting Domain Walls of Axionlike Models Using Terrestrial Experiments, Phys. Rev. Lett. 110, 021803 (2013) (How do you know if you ran through a wall? arXiv:1205.6260); see also a Physics Focus article about this work
  • Przemyslaw Wlodarczyk, Szymon Pustelny, Dmitry Budker, and Marcin Lipinski, Multi-Channel Data Acquisition System with Absolute Time Synchronization, Nuclear Instruments and Methods in Physics Research A 763, 150–154 (2014); arXiv:1311.5849

More exotic physics

  • Pavel Fadeev, Tao Wang, Y. B. Band, Dmitry Budker, Peter W. Graham, Alexander O. Sushkov, and Derek F. Jackson Kimball, Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope, arXiv:2006.09334 (2020)

  • Dmitry Budker, Victor V. Flambaum, and Ariel Zhitnitsky, Axion Quark Nuggets. SkyQuakes and Other Mysterious Explosions, arXiv:2003.07363 (2020)

  • V. Flambaum, M. Pospelov, A. Ritz, and Y. V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, arXiv:1912.13129 (2019)
  • Abhishek Banerjee, Dmitry Budker, Joshua Eby, Victor V. Flambaum, Hyungjin Kim, Oleksii Matsedonsky, and Gilad Perez, Searching for Earth/Solar Axion Halos, arXiv:1912.04295 (2019)
  • Wenxiang Hu, Matthew Lawson, Dmitry Budker, Nataniel L. Figueroa, Derek F. Jackson Kimball, Allen P. Mills Jr., and Christian Voigt, A network of precision gravimeters as a detector of matter with feeble nongravitational coupling, Eur. Phys. J. D 74, 115 (2020), arXiv:1912.01900
  • Dionysios Antypas, Dmitry Budker, Victor V. Flambaum, Mikhail G. Kozlov, Gilad Perez, and Jun Ye, Fast apparent oscillations of fundamental constants, ANNALEN DER PHYSIK 2020, 1900566; arXiv:1912.01335
  • Pavel Fadeev, Filip Ficek, Mikhail G. Kozlov, Dmitry Budker, and Victor V. Flambaum, Spin-dependent potentials: spurious singularity and bounds on contact terms,arXiv:1911.05816 (2019)
  • C. Smorra, Y. V. Stadnik, P. E. Blessing, M. Bohman, M. J. Borchert, J. A. Devlin, S. Erlewein, J. A. Harrington, T. Higuchi, A. Mooser, G. Schneider, M. Wiesinger, E. Wursten, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki, D. Budker and S. Ulmer, Direct limits on the interaction of antiprotons with axion-like dark matter. Nature 575, 310–314 (2019) doi:10.1038/s41586-019-1727-9
  • V. V. Flambaum, H. B. Tran Tan, D. Budker, and A. Wickenbrock, Atomic and molecular transitions induced by axions via oscillating nuclear moments, arXiv:1910.07705 (2019)
  • Dmitry Budker, Victor V. Flambaum, Xunyu Liang, and Ariel Zhitnitsky, Axion Quark Nuggets and how a Global Network can discover them, Phys. Rev. D 101, 043012 (2020), arXiv:1909.09475 
  • Victor V. Flambaum, Dmitry Budker, and Arne Wickenbrock, Oscillating nuclear electric dipole moments inside atoms, arXiv:1909.04970 (2019)
  • H. Grote, and Y. V. Stadnik, Novel signatures of dark matter in laser-interferometric gravitational-wave detectors, arXiv:1906.06193
  • Gary P. Centers, John W. Blanchard, Jan Conrad, Nataniel L. Figueroa, Antoine Garcon, Alexander V. Gramolin, Derek F. Jackson Kimball, Matthew Lawson, Bart Pelssers, Joeseph A. Smiga, Yevgeny Stadnik, Alexander O. Sushkov, Arne Wickenbrock, Dmitry Budker, and Andrei Derevianko, Stochastic amplitude fluctuations of bosonic dark matter and revised constraints on linear couplings, arXiv:1905.13650 (2019)
  • D. Antypas, O. Tretiak, R. Ozeri, G. Perez, and D. Budker, A search for light scalar dark matter in the radio-frequency band with atomic spectroscopy,  Phys. Rev. Lett. 123, 141102 (2019), arXiv:1905.02968
  • Abhishek Banerjee, Dmitry Budker, Joshua Eby, Hyungjin Kim, and Gilad Perez, Relaxion Stars and their detection via Atomic Physics, Communications Physics 3, Article number: 1 (2020); arXiv:1902.08212
  • Min Jiang, Hui Li, Zhennan Zhu, Xinhua Peng, and Dmitry Budker, Floquet-state Maser under Real-time Quantum Feedback Control, arXiv:1901.00970 (2019).
  • Pavel Fadeev, Yevgeny V. Stadnik, Filip Ficek, Mikhail G. Kozlov, Victor V. Flambaum, and Dmitry Budker, Revisiting spin-dependent forces mediated by new bosons: Potentials in the coordinate-space representation for macroscopic- and atomic-scale experiments, Phys. Rev. A 99, 022113 (2019); arXiv:1810.10364
  • Filip Ficek and Dmitry Budker, Constraining exotic interactions, ANNALEN DER PHYSIK, 1800273 (2018),; arXiv:1808.01233
  • M. G. Kozlov and D. Budker, Sensitivity coefficients to variation of fundamental constants, ANNALEN DER PHYSIK, 1800254 (2018),, arXiv:1807.08337
  • Teng Wu, John W. Blanchard, Derek F. Jackson Kimball, Min Jiang, and Dmitry Budker, Nuclear-spin comagnetometer based on a liquid of identical molecules, Phys. Rev. Lett. 121, 023202 (2018), arXiv:1804.02096
  • V. V. Flambaum, H. B. Tran Tan, I. B. Samsonov, Y. V. Stadnik and D. Budker, Resonant detection and production of axions with atoms, International Journal of Modern Physics A 33(31), 1844030 (2018)
  • V.V. Flambaum, I.B. Samsonov, H. B. Tran Tan, and D. Budker, Coherent axion-photon transformations in the forward scattering on atoms, Phys. Rev. D 98, 095028 (2018), arXiv:1805.01793
  • H. B. Tran Tan, V. V. Flambaum, I. B. Samsonov, Y. V. Stadnik, and D. Budker, Interference-assisted resonant detection of axions, Physics of the Dark Universe (2019); arXiv:1803.09388
  • Review article: Rémy Battesti, Jerome Beard, Sebastian Böser, Nicolas Bruyant, Dmitry Budker, Scott A. Crooker, Edward J.Daw, Victor V.Flambaum, Toshiaki Inada, Igor G. Irastorza, Felix Karbstein, Dong Lak Kim, Mikhail G.Kozlov, Ziad Melhem, Arran Phipps, Pierre Pugnat, Geert Rikken, Carlo Rizzo, Matthias Schott, Yannis K. Semertzidis, Herman H. J. ten Kate, and Guido Zavattini, High magnetic fields for fundamental physics, Physics Reports (2018), arXiv:1803.07547
  • Filip Ficek, Pavel Fadeev, Victor V. Flambaum, Derek F. Jackson Kimball, Mikhail G. Kozlov, Yevgeny V. Stadnik, and Dmitry Budker, Constraints on exotic spin-dependent interactions between matter and antimatter from antiprotonic helium spectroscopy, Phys. Rev. Lett. 120, 183002 (2018), arXiv:1801.00491
  • Yevgeny V. Stadnik, Probing “long-range” neutrino-mediated forces with atomic and nuclear spectroscopy, arXiv:1711.03700
  • Y. V. Stadnik, V. A. Dzuba, V. V. Flambaum, Improved limits on axion-like-particle-mediated P,T-violating interactions between electrons and nucleons from electric dipole moments of atoms and molecules,
  • C. Abel, N. J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bondar, M. Daum, M. Fairbairn, V. V. Flambaum, P. Geltenbort, K. Green, W. C. Griffith, M. van der Grinten, Z. D. Gruji?, P. G. Harris, N. Hild, P. Iaydjiev, S. N. Ivanov, M. Kasprzak, Y. Kermaidic, K. Kirch, H.-C. Koch, S. Komposch, P. A. Koss, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemière, D. J. E. Marsh, P. Mohanmurthy, A. Mtchedlishvili, M. Musgrave, F. M. Piegsa, G. Pignol, M. Rawlik, D. Rebreyend, D. Ries, S. Roccia, D. Rozp?dzik, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, Y. V. Stadnik, A. Weis, E. Wursten, J. Zejma, G. Zsigmond, Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields,
  • V. A. Dzuba, V. V. Flambaum, Y. V. Stadnik, Probing low-mass vector bosons with parity nonconservation and nuclear anapole moment measurements in atoms and molecules,
  • Dmitri D. Ryutov, Dmitry Budker, and Victor V. Flambaum, A hypothetical effect of the Maxwell-Proca electromagnetic stresses on galaxy rotation curves, Astrophysical Journal (ApJ)871 (2019); arXiv:1708.09514
  • V. V. Flambaum, A. J. Geddes, and A. V. Viatkina, Isotope shift, non-linearity of King plot and search for nuclear island of stability and new particles, Phys. Rev. A 97, 032510 (2018), arXiv:1709.00600
  • Julian C. Berengut, Dmitry Budker, Cedric Delaunay, Victor V. Flambaum, Claudia Frugiuele, Elina Fuchs, Christophe Grojean, Roni Harnik, Roee Ozeri, Gilad Perez, and Yotam Soreq, Probing new light force-mediators by isotope shift spectroscopy, Phys. Rev. Lett. 120, 091801 (2018), arXiv:1704.05068
  • Filip Ficek, Derek F. Jackson Kimball, Mikhail Kozlov, Nathan Leefer, Szymon Pustelny, and Dmitry Budker, Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy, Phys. Rev. A 95, 032505 (2017), arXiv:1608.05779
  • N. Leefer, A. Gerhardus, D. Budker, V. V. Flambaum, and Y. V. Stadnik, Search for the effect of massive bodies on atomic spectra and constraints on Yukawa-type interactions of scalar particles, Phys. Rev. Lett117, 271601 (2016), arXiv:1607.04956
  • D. F. Jackson Kimball, J. Dudley, Y. Li, S. Thulasi, S. Pustelny, D. Budker, and M. Zolotorev, Magnetic shielding and exotic spin-dependent interactions, Phys. Rev. D 94, 082005 (2016), arXiv:1606.00696
  • Dmitry Budker and Andrei Derevianko, A data archive for storing precision measurements, Physics Today 68(9), 10 (2015); doi: 10.1063/PT.3.2896.
  • Shlomi Kotler, Roee Ozeri, and Derek F. Jackson Kimball, Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale, Phys. Rev. Lett. 115, 081801 (2015)
  • D. F. Jackson Kimball, Nuclear spin content and constraints on exotic spin-dependent couplings, New J. Phys. 17 073008 (2015)
  • D. F. Jackson Kimball, I. Lacey, J. Valdez, J. Swiatlowski, C. Rios, R. Peregrina-Ramirez, C. Montcrieffe, J. Kremer, J. Dudley, and C. Sanchez, A dual-isotope rubidium comagnetometer to search for anomalous long-range spin-mass (spin-gravity) couplings of the proton, Annalen der Physik 525(7), 514–528 (2013); (arxiv:1304.4660)
  • M. P. Ledbetter, M. V. Romalis, and D. F. Jackson Kimball, Constraints on short-range spin-dependent interactions from scalar spin-spin coupling in deuterated molecular hydrogen, Phys. Rev. Lett. 110, 040402 (2013); arXiv:1203.6894
  • D. F. Jackson Kimball, Alec Boyd, and D. Budker, Constraints on anomalous spin-spin interactions from spin-exchange collisions, Phys. Rev. A. 82, 062714 (2010) (arXiv:1010.1505)

Sodium laser guide stars (LGS), photometric stars, mesospheric magnetometry, and mirrorless lasing

  • Albert, D. Budker, K. Chance, I. E. Gordon, F. Pedreros Bustos, M. Pospelov, S. Rochester, and H. R. Sadeghpour, A Precise Photometric Ratio via Laser Excitation of the Sodium Layer I: One-photon Excitation Using 342.78 nm Light; arXiv:2001.10958 (2020)
  • F. Pedreros Bustos, R. Holzlöhner, S. Rochester, D. Bonaccini Calia, J. Hellemeier, and D. Budker, Frequency chirped continuous-wave sodium laser guide stars, Journal of the Optical Society of America B 37(4), pp. 1208-1218 (2020); arXiv:2001.02717
  • Felipe Pedreros Bustos, Domenico Bonaccini Calia, Dmitry Budker, Mauro Centrone, Joschua Hellemeier, Paul Hickson, Ronald Holzlöhner, and Simon Rochester, Polarization-driven spin precession of mesospheric sodium atoms, Optics Letters 43(23), 5825-5828, (2018); arXiv:1809.03923
  • Alexander M. Akulshin, Felipe Pedreros Bustos, and Dmitry Budker, Continuous-wave mirrorless lasing at 2.21 μm in sodium vapors, Optics Letters 43(21), 5279 (2018); arXiv:1808.10629
  • Felipe Pedreros Bustos, Domenico Bonaccini Calia, Dmitry Budker, Mauro Centrone, Joschua Hellemeier, Paul Hickson, Ronald Holzlöhner, and Simon Rochester, Remote sensing of geomagnetic fields and atomic collisions in the mesosphere, Nature Communications 9, Article number: 3981 (2018); arXiv:1802.04686
  • Felipe Pedreros Bustos, Ronald Holzlöhner, Simon Rochester, Domenico Bonaccini Calia, Joschua Hellemeier, and Dmitry Budker, Simulations of continuous-wave sodium laser guide stars with polarization modulation at Larmor frequency, Proc. SPIE 10703, Adaptive Optics Systems VI, 107033R (2018),
  •  Felipe Pedreros Bustos, Alexander Akulshin, Ronald Holzlöhner, Simon Rochester, and Dmitry Budker, Studies towards a directional polychromatic sodium laser guide star, Proc. SPIE 10703, Adaptive Optics Systems VI, 107030R (2018),
  • Felipe Pedreros Bustos; Ronald Holzlöhner; Dmitry Budker; Steffan Lewis and Simon Rochester, Sodium vapor cell laser guide star experiments for continuous wave model validation, Proc. SPIE 9909, Adaptive Optics Systems V, 99095P (July 27, 2016); doi:10.1117/12.2232524
  • R. Holzlöhner, D. Bonaccini Calia, D. Bello, D. Budker, M. Centrone, I. Guidolin, W. Hackenberg, et al., Comparison between Observation and Simulation of Sodium LGS Return Flux with a 20W CW Laser on TenerifeProc. SPIE 9909, Adaptive Optics Systems V, 99095E (2016); doi:10.1117/12.2233072
  • Angel Otarola, Paul Hickson, Ronald Gagne, Yong Bo, Junwei Zuo, Shiyong Xie, Lu Feng, Simon Rochester, Dmitry Budker, Shixia Shen, Suijian Xue, Li Min, Kai Wei, Corinne Boyer, Brent Ellerbroek, JingYao Hu, Qinjun Peng, and Zuyan Xu, On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics, Journal of Astronomical Instrumentation, 5(1) (2016) 1650001
  • S. M. Rochester, A. Otarola, C. Boyer, D. Budker, B. Ellerbroek, R. Holzlöhner, and L. Wang, Modeling of pulsed laser guide stars for the Thirty Meter Telescope project, JOSA B 29(8), 2176-2188 (2012); arXiv:1203.5900
  • J. M. Higbie, S. M. Rochester, B. Patton, R. Holzlöhner, D. Bonaccini Calia, D. Budker, Magnetometry with Mesospheric Sodium, PNAS 10.1073/pnas.1013641108 (2011); arXiv:0912.4310
  • Ronald Holzlöhner, Simon M. Rochester, Thomas Pfrommer, Domenico Bonaccini Calia, Dmitry Budker, James M. Higbie, and Wolfgang Hackenberg, Laser guide star return flux simulations based on observed sodium density profiles, Proc. SPIE, DOI: 10.1117/12.856721
  • R. Holzloehner, S. M. Rochester, D. Bonaccini Calia, D. Budker, J. M. Higbie, and W. Hackenberg, Optimization of cw sodium laser guide star efficiency, Astronomy & Astrophysics AA/2009/13108 (arXiv:0908.1527)

NV-diamond: physics and applications

  • Reinis Lazda, Laima Busaite, Andris Berzins, Janis Smits, Marcis Auzinsh, Dmitry Budker, Ruvin Ferber, and Florian Gahbauer, Cross-relaxation studies with optically detected magnetic resonances in nitrogen-vacancy centers in diamond in an external magnetic field, arXiv:2007.00473 (2020)

  • Viktor Ivády, Huijie Zheng, Arne Wickenbrock, Lykourgos Bougas, Georgios Chatzidrosos, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Dmitry Budker, Igor A. Abrikosov, and Adam Gali, Photoluminescence at the ground state level anticrossing of the nitrogen-vacancy center in diamond, arXiv:2006.05085 (2020)

  • M. Block, B. Kobrin, A. Jarmola, S. Hsieh, C. Zu, N. L. Figueroa, V. M. Acosta, J. Minguzzi, J. R. Maze, D. Budker, and N. Y. Yao, Optically Enhanced Electric Field Sensing using Nitrogen-Vacancy Ensembles, arXiv:2004.02886 (2020)
  • Jarmola, I. Fescenko, V. M. Acosta, M. W. Doherty, F. K. Fatemi, T. Ivanov, D. Budker, and V. S. Malinovsky, Robust optical readout and characterization of nuclear spin transitions in nitrogen-vacancy ensembles in diamond, Phys. Rev. Research 2, 023094 (2020); 
  • Sean Lourette, Lykourgos Bougas, Metin Kayci, Shoujun Xu, and Dmitry Budker, Noncovalent force spectroscopy using wide-field optical and diamond-based magnetic imaging, Journal of Applied Physics 126, 194502 (2019); arXiv:1908.10052
  • Huijie Zheng, Zhiyin Sun, Georgios Chatzidrosos, Chen Zhang, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Jörg Wrachtrup, Arne Wickenbrock, and Dmitry Budker, Microwave-free vector magnetometry with nitrogen-vacancy centers along a single axis in diamond, Phys. Rev. Applied 13, 044023 (2020), arXiv:1904.04361
  • Huijie Zheng, Jingyan Xu, Geoffrey Iwata, Till Lenz, Julia Michl, Boris Yavkin, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima, Junichi Isoya, Joerg Wrachtrup, Arne Wickenbrock, and Dmitry Budker, Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond, Phys. Rev. Applied 11, 064068 (2019); arXiv:1811.11498
  • Yannick Dumeige, Jean-François Roch, Fabien Bretenaker, Thierry Debuisschert, Victor Acosta, Christoph Becher, Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Alexander Wilzewski, and Dmitry Budker, Infrared laser magnetometry with a NV doped diamond intracavity etalon, Optics Express 27(2), 1706-1717 (2019); arXiv:1810.08253
  • Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Huijie Zheng, Oleg Tretiak, Yu Yang, and Dmitry Budker, Eddy-current imaging with nitrogen-vacancy centers in diamond, Phys. Rev. Applied 11, 024005 (2019); arXiv:1810.02723
  • Thomas Mittiga, Satcher Hsieh, Chong Zu, Bryce Kobrin, Francisco Machado, Prabudhya Bhattacharyya, Nicholas Rui, Andrey Jarmola, Soonwon Choi, Dmitry Budker, and Norman Y. Yao, Imaging the local charge environment of nitrogen-vacancy centers in diamond, Phys. Rev. Lett. 121, 246402 (2018); arXiv:1809.01668
  • Review article: Victor M. Acosta, Louis S. Bouchard, Dmitry Budker, Ron Folman, Till Lenz, Patrick Maletinsky, Dominik Rohner, Yechezkel Schlussel, and Lucas Thiel, Color centers in diamond as novel probes of superconductivity, J Supercond Nov Magn (2018); arXiv:1808.03282
  • Metin Kayci, Sean Lourette, Tao Wang, Lykourgos Bougas, and Dmitry Budker, Quantitative measurements of non-covalent interactions with diamond based magnetic imaging, Appl. Phys. Lett.113, 053103 (2018)
  • Marcis Auzinsh, Andris Berzins, Dmitry Budker, Laima Busaite, Ruvin Ferber, Florian Gahbauer, Reinis Lazda, Arne Wickenbrock, and Huijie Zheng, Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing, Phys. Rev. B 100, 075204 (2019); arXiv:1805.01251
  • Yechezkel Schlussel, Till Lenz, Dominik Rohner, Yaniv Bar-Haim, Lykourgos Bougas, David Groswasser, Michael Kieschnick, Evgeny Rozenberg, Lucas Thiel, Amir Waxman, Jan Meijer, Patrick Maletinsky, Dmitry Budker, and Ron Folman, Widefield imaging of superconductor vortices with electron spins in diamond, Phys. Rev. Applied 10, 034032 (2018); arXiv:1803.01957
  •  Lykourgos Bougas, Alexander Wilzewski, Yannick Dumeige, Dionysios Antypas, Teng Wu, Arne Wickenbrock, Emilie Bourgeois, Milos Nesladek, Hannah Clevenson, Danielle Braje, Dirk Englund, and Dmitry Budker, On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries, Micromachines 9(6), 276 (2018)
  • A. Norambuena, E. Muñoz, H. T. Dinani, A. Jarmola, P. Maletinsky, D. Budker, and J. R. Maze, Spin-lattice relaxation of individual solid-state spins, Phys. Rev. B 97, 094304 (2018), arXiv:1711.10280
  • D. Farfurnik, A. Jarmola, D. Budker, and N. Bar-Gill, Optimizing spin ensemble-based AC magnetometry using dynamical decoupling at low temperatures, J. Opt.20, 024008 (2018), arXiv:1709.03368
  • Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Nathan Leefer, Teng Wu, Kasper Jensen, Yannick Dumeige, and Dmitry Budker, Miniature cavity-enhanced diamond magnetometer, Phys. Rev. Applied 8, 044019 (2017), arXiv:1706.02201
  • Huijie Zheng, Georgios Chatzidrosos, Arne Wickenbrock, Lykourgos Bougas, Reinis Lazda, Andris Berzins, Florian Helmuth Gahbauer, Marcis Auzinsh, Ruvin Ferber, and Dmitry Budker, Level anti-crossing magnetometry with color centers in diamond, Proc. SPIE 10119, Slow Light, Fast Light, and Opto-Atomic Precision Metrology X, 101190X (20 February 2017); doi: 10.1117/12.2261160, arXiv:1701.06838
  • P. Kehayias, A. Jarmola, N. Mosavian, I. Fescenko, F. M. Benito, A. Laraoui, J. Smits, L. Bougas, D. Budker, A. Neumann, S. R. J. Brueck, and V. M. Acosta, Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip, Nature Communications 8, Article number: 188 (2017), doi:10.1038/s41467-017-00266-4, arXiv:1701.01401
  • A. Jarmola, Z. Bodrog, P. Kehayias, M. Markham, J. Hall, D. J. Twitchen, V. M. Acosta, A. Gali, and D. Budker, Optically Detected Magnetic Resonances of Nitrogen-Vacancy Ensembles in 13C Enriched Diamond, Phys. Rev. B 94, 094108, (2016), arXiv:1608.08706
  • Jeson Chen, Sean Lourette, Kristine Rezai, Tobias Hoelzer, Michael Lake, Milos Nesladek, Louis-S. Bouchard, Philip Hemmer, and Dmitry Budker, Optical quenching and recovery of photoconductivity in single-crystal diamond, Applied Physics Letters110, 011108 (2017), arXiv:1607.08354
  • Arne Wickenbrock, Huijie Zheng, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola, Victor M. Acosta, and Dmitry Budker, Microwave-free magnetometry with nitrogen-vacancy centers in diamond, Appl. Phys. Lett. 109, 053505 (2016), arXiv:1606.03070
  • Book chapter: K. Jensen, P. Kehayias, and D. Budker, Magnetometry with Nitrogen-Vacancy Centers in Diamond, in High Sensitivity Magnetometers, ed. by A. Grosz, M. J. Haji-Sheikh, and S. C. Mukhopadhyay, Springer, 2016.
  • D. Farfurnik, A. Jarmola, L. M. Pham, Z. H. Wang, V. V. Dobrovitski, R. L. Walsworth, D. Budker, and N. Bar-Gill, Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling, Proc. SPIE 9900, Quantum Optics, 99000N (April 29, 2016); doi:10.1117/12.2227479
  • M. Mrozek, A. Wojciechowski, D.S. Rudnicki, J. Zachorowski, P. Kehayias, D. Budker, and W. Gawlik, Coherent population oscillations with nitrogen-vacancy color centers in diamond, Phys. Rev. B94(3) (2016), arXiv:1512.03996
  • A. Jarmola, A. Berzins, J. Smits, K. Smits, J. Prikulis, F. Gahbauer, R. Ferber, D. Erts, M. Auzinsh, and D. Budker, Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond, Appl.Phys.Lett. 107, 242403 (2015), arXiv:1511.06189
  • M. Mrozek, D. Rudnicki, P. Kehayias, A. Jarmola, D. Budker, and W. Gawlik, Longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond, EPJ Quantum Technology 2(22) (2015), arXiv:1505.02253
  • Demitry Farfurnik, Andrey Jarmola, Linh M. Pham, Zhi-Hui Wang, Viatcheslav V. Dobrovitski, Ronald L. Walsworth, Dmitry Budker, and Nir Bar-Gill, Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond, Phys. Rev. B 92, 060301(R) (2015), arXiv:1505.00636
  • L. T. Hall, P. Kehayias, D. A. Simpson, A. Jarmola, A. Stacey, D. Budker, and L. C. L. Hollenberg, Electron Spin Resonance Spectroscopy via Relaxation of Solid-State Spin Probes at the Nanoscale, Nature Communications 7, Article number: 10211 doi:10.1038/ncomms10211 (2016), arXiv:1503.00830
  • E. Bourgeois, A. Jarmola, P. Siyushev, M. Gulka, J. Hruby, F. Jelezko, D. Budker, and M. Nesladek, Photoelectrical detection of electron spin resonance of nitrogen-vacancy centres in diamond, Nature Communications 6, Article number: 8577 doi:10.1038/ncomms9577 (2015), arXiv:1502.07551
  • P. Kehayias, M. Mrózek, V.M. Acosta, A. Jarmola, D.S. Rudnicki, R. Folman, W. Gawlik, and D. Budker, Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond, Phys. Rev. B 89, 245202 (2014), arXiv:1403.2119
  • K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton, and D. Budker, Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond, Phys. Rev. Lett. 112, 160802 (2014), arXiv:1401.2438
  • Marcus W. Doherty, Victor M. Acosta, Andrey Jarmola, Michael S.J. Barson, Neil B. Manson, Dmitry Budker, and Lloyd C.L. Hollenberg, Temperature shifts of the resonances of the NV- center in diamond, Phys. Rev. B 90, 041201(R) (2014); arXiv:1310.7303
  • V. M. Huxter, T. A. A. Oliver, D. Budker, and G. R. Fleming, Vibrational and electronic dynamics of nitrogen–vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy, Nature Physics (2013) doi:10.1038/nphys2753
  • A. Waxman, H. Schlussel, D. Groswasser, V.M. Acosta, L.-S. Bouchard, and D. Budker, and R. Folman, Diamond Magnetometry of Superconducting Thin Films, Phys. Rev. B 89, 054509 (2014); arXiv:1308.2689
  • Victor M. Acosta, Kasper Jensen, Charles Santori, Dmitry Budker, Rymond G. Beausoleil, Electromagnetically-induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing, Phys. Rev. Lett. 110, 213605 (2013); arXiv:1303.6996
  • P. Kehayias, M.W. Doherty, D. English, R. Fischer, A. Jarmola, K. Jensen, N. Leefer, P. Hemmer, N.B. Manson, and D. Budker, The Infrared Absorption Band and Vibronic Structure of the Nitrogen-Vacancy Center in Diamond, Phys. Rev. B. 88(16), 165202 (2013); arXiv:1301.6197
  • Yannick Dumeige, Mayeul Chipaux, Vincent Jacques, François Treussart, Jean-François Roch, Thierry Debuisschert, Victor Acosta, Andrey Jarmola, Kasper Jensen, Pauli Kehayias, and Dmitry Budker, Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity, Phys. Rev. B 87(15), 155202 (2013); arXiv:1301.0808
  • Maria Simanovskaia, Kasper Jensen, Andrey Jarmola, Kurt Aulenbacher, Neil Manson, and Dmitry Budker, Sidebands in Optically Detected Magnetic Resonance Signals of Nitrogen Vacancy Centers in Diamond, Phys. Rev. B 87, 224106 (2013); arXiv:1212.5746
  • Hai-Jing Wang, Chang S. Shin, Claudia E. Avalos, Scott J. Seltzer, Dmitry Budker, Alexander Pines, and Vikram S. Bajaj, Sensitive Magnetic Control of Ensemble Nuclear Spin Hyperpolarisation in Diamond, Nature Communications 4, Article number: 1940; doi:10.1038/ncomms2930 (2013); arXiv:1212.0035
  • Nir Bar-Gill, Linh M. Pham, Andrey Jarmola, Dmitry Budker, and Ronald L. Walsworth, Solid-state electronic spin coherence time approaching one second; Nature Communications 4(4), Article number: 1743 doi:10.1038/ncomms2771 (2013); arXiv:1211.7094
  • Ran Fischer, Christian O. Bretschneider, Paz London, Dmitry Budker, David Gershoni, and Lucio Frydman, Bulk Nuclear Polarization Enhanced at Room-Temperature by Optical Pumping, Phys. Rev. Lett. 111(5), 057601(2013); arXiv:1211.5801
  • K. Jensen, V. M. Acosta, A. Jarmola, D. Budker, Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond, Phys. Rev. B 87, 014115 (2013); arXiv:1210.5574
  • V. M. Huxter, T. A. A. Oliver, D. Budker, and G. R. Fleming, Vibrational and electronic ultrafast relaxation of the nitrogen-vacancy centers in diamond, in Ultrafast Phenomena XVIII: Proceedings of the 18th International Conference. EPJ Web of Conferences 41, 04009 (2013); arXiv:1207.4251
  • Micah Ledbetter, Kasper Jensen, Ran Fischer, Andrey Jarmola, and Dmitry Budker, Gyroscopes based on nitrogen-vacancy centers in diamond, Phys. Rev. A 86, 052116 (2012); arXiv:1205.0093
  • Ran Fischer, Andrey Jarmola, Pauli Kehayias, and Dmitry Budker, Room-temperature optical polarization of nuclear ensembles in diamond, Phys. Rev. B 87, 125207 (2013); arXiv:1202.1072
  • Chang S. Shin, Claudia E. Avalos, Mark C. Butler, David R. Trease, Scott J. Seltzer, J. Peter Mustonen, Daniel J. Kennedy, Victor M. Acosta, Dmitry Budker, Alexander Pines, and Vikram S. Bajaj, Room Temperature Operation of a Radiofrequency Diamond Magnetometer near the Shot Noise Limit, J. Appl. Phys. 112, 124519 (2012); arXiv:1201.3152
  • A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, D. Budker, Temperature and magnetic field dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond, Phys. Rev. Lett. 108, 197601 (2012) (arXiv:1112.5936)
  • Dmitry Budker, The sense of colour centres, Nature Physics (News and Views), doi:10.1038/nphys1989 (2011)
  • Victor M. Acosta, Andrey Jarmola, Lucas J. Zipp, M. P. Ledbetter, E. Bauch, and Dmitry Budker, Broadband magnetometry by infrared-absorption detection of diamond NV centers and associated temperature dependence, Proc. SPIE, DOI: 10.1117/12.872624
  • V. M. Acosta, E. Bauch, A. Jarmola, L. J. Zipp, M. P. Ledbetter, and D. Budker, Broadband magnetometry by infrared-absorption detection of diamond NV centers, Appl. Phys. Lett. 97, 174104 (2010); (arXiv:1009.4747)
  • V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, Optical properties of the nitrogen-vacancy singlet levels in diamond, Phys. Rev. B. 82.201202 (2010) (arXiv:1009.0032)
  • E. Kim, V. M. Acosta, E. Bauch, D. Budker, and P. R. Hemmer, Electron Spin Resonance in Nitrogen-Vacancy Centers in Diamond and Ionization Fraction vs. Electron Irradiation Dose, Appl. Phys. Lett. 101, 082410 (2012); full text; arXiv:0912.5267
  • V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L. S. Bouchard, and D. Budker, Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond, Phys. Rev. Lett., 104, 07081 (2010); see also Erratum (
  • L.-S. Bouchard, V. M. Acosta, E. Bauch, and D. Budker, Detection of the Meissner Effect with a Diamond Magnetometer, New J. Phys.13 025017 (2011)
  • V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, and D. Budker, High nitrogen-vacancy density diamonds for magnetometry applications, Phys. Rev. B 80, 115202 (2009) (arXiv:0903.3277)
  • J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A.Yacoby, R. Walsworth, M. D. Lukin, High-sensitivity diamond magnetometer with nanoscale resolution, Nature Physics4, 810 – 816 (01 Oct 2008), doi: 10.1038/nphys1075, Full text; arXiv:0805.1367


  • Geoffrey Z. Iwata, Yinan Hu, Tilmann Sander, Muthuraman Muthuraman, Venkata Chaitanya Chirumamilla, Sergiu Groppa, Dmitry Budker, and Arne Wickenbrock, Biomagnetic signals recorded during transcranial magnetic stimulation (TMS)-evoked peripheral muscular activity, arXiv:1909.11451 (2019)
  • Eric Corsini, Victor Acosta, Nicolas Baddour, James Higbie, Brian Lester, Paul Licht, Brian Patton, Mark Prouty, and Dmitry Budker, Search for plant biomagnetism with a sensitive atomic magnetometer, J. Appl. Phys.109, 074701 (2011); arXiv:1006.3578

Squeezed light, squeezed spins

  • S. M. Rochester, M. P. Ledbetter, T. Zigdon, A. D. Wilson-Gordon, and D. Budker, Orientation-to-alignment conversion and spin squeezing. Phys. Rev. A 85(2); 022125 (2012); arXiv:1106.3538
  • M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett.93(17), 173002 (2004); physics/0403097 . Details of some calculations are given in the companion note physics/0407125
  • A.B. Matsko, I. Novikova, G.R. Welch, D. Budker, D.F. Kimball, S.M. Rochester, Vacuum squeezing in atomic media via self-rotation, Phys. Rev. A66, 043815 (2002); quant-ph/0112072

Nuclear magnetic and quadrupole resonance (and non-resonance), imaging

  • Tobias F. Sjolander, John W. Blanchard, Dmitry Budker, and Alexander Pines, Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance, Journal of Magnetic Resonance 318, 106781 (2020)

  • Book chapter: Alexey S. Kiryutin, Ivan V. Zhukov, Alexandra V. Yurkovskaya, Dmitry Budker, and Konstantin L. Ivanov, Singlet Order in Heteronuclear Spin Systems, in: New Developments in NMR No. 22. Long-lived Nuclear Spin Order: Theory and Applications, edited by Giuseppe Pileio. The Royal Society of Chemistry 2020. Published by the Royal Society of Chemistry,

  • Dudari B. Burueva, James Eills, John W. Blanchard, Antoine Garcon, Román Picazo Frutos, Kirill V. Kovtunov, Igor Koptyug, and Dmitry Budker, Chemical Reaction Monitoring Using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers, Angew. Chem. Int. Ed. doi:10.1002/anie.202006266 (2020);  ChemRxiv. Preprint. 12168312
  • John W. Blanchard, Teng Wu, James Eills, Yinan Hu, and Dmitry Budker, Zero- to Ultralow-Field Nuclear Magnetic Resonance J-Spectroscopy with Commercial Atomic Magnetometer, Journal of Magnetic Resonance 314, 106723 (2020); arXiv:1911.07554
  • James Eills, Eleonora Cavallari, Carla Carrera, Dmitry Budker, Silvio Aime, and Francesca Reineri, Real Time Nuclear Magnetic Resonance Detection of Fumarase Activity using Parahydrogen-Hyperpolarized [1-13C]fumarate, J. Am. Chem. Soc., 141, 51, 20209-20214 (2019),; (see also JACS Spotlight)
  • Dmitry Budker, Extreme nuclear magnetic resonance: zero field, single spins, dark matter…, Journal of Magnetic Resonance (2019); arXiv:1905.08851
  • James Eills, John W. Blanchard, Teng Wu, Christian Bengs, Julia Hollenbach, Dmitry Budker, and Malcolm H. Levitt, Polarization transfer via field sweeping in parahydrogen-enhanced nuclear magnetic resonance, J. Chem. Phys. 150, 174202 (2019); chemrxiv 7946807 (2019)
  • Danila Barskiy, Michael C. D. Tayler, Irene Marco-Rius, John Kurhanewicz, Daniel B. Vigneron, Sevil Cikrikci, Ayca Aydogdu, Moritz Reh, Andrey Pravdivtsev, Jan-Bernd Hövener, John W. Blanchard, Teng Wu, Dmitry Budker, and Alexander Pines, Zero-Field Nuclear Magnetic Resonance of Chemically Exchanging Systems, Nature Communications 10, article number: 3002 (2019); chemrxiv 7658372
  • Min Jiang, Roman Picazo Frutos, Teng Wu, John W. Blanchard, Xinhua Peng, and Dmitry Budker, Magnetic Gradiometer for Detection of Zero- and Ultralow-Field Nuclear Magnetic Resonance, Phys. Rev. Applied 11, 024005 (2019); arXiv:1808.02743; this work was covered in Advances in Engineering
  • Min Jiang, Teng Wu, John W. Blanchard, Guanru Feng, Xinhua Peng, and Dmitry Budker, Experimental Benchmarking of Quantum Control in Zero-Field Nuclear Magnetic Resonance, Science Advances4(6), eaar6327 (2018); arXiv:1708.06324
  • Michael C. D. Tayler, Thomas Theis, Tobias F. Sjolander, John W. Blanchard, Arne Kentner, Szymon Pustelny, Alexander Pines, and Dmitry Budker, Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field, Rev. of Sci. Instr.88, 091101 (2017), arXiv:1705.04489
  • Alexander Wilzewski, Samer Afach, John W. Blanchard, and Dmitry Budker, A Method for Measurement of Spin-Spin Couplings with sub-mHz Precision Using Zero- to Ultralow-Field Nuclear Magnetic Resonance, Journal of Magnetic Resonance284 66–72 (2017), arXiv:1702.04297
  • Review article: John W. Blanchard and Dmitry Budker, Zero- to Ultralow-Field NMR, eMagRes5(3), 2016.
  • Michael C.D. Tayler, Tobias F. Sjolander, Alexander Pines, and Dmitry Budker, Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer, J. Mag. Res. (2016), doi:10.1016/j.jmr.2016.05.010
  • Tobias Fredrik Sjolander, Michael C.D. Tayler, Jonathan P. King, Dmitry Budker, and Alexander Pines, Transition-Selective Pulses in Zero-Field Nuclear Magnetic Resonance, J. Phys. Chem. A (2016), DOI: 10.1021/acs.jpca.6b04017
  • John W. Blanchard, Tobias F. Sjolander, Jonathan P. King, Micah P. Ledbetter, Emma H. Levine, Vikram S. Bajaj, Dmitry Budker, and Alexander Pines, Measurement of untruncated nuclear spin interactions via zero- to ultralow-field nuclear magnetic resonance, Phys. Rev. B 92, 220202(R) (2015); arXiv:1501.05768
  • Y. Shimizu, J.W. Blanchard, S. Pustelny, G. Saielli, A. Bagno, M.P. Ledbetter, D. Budker, and A. Pines, Zero-Field nuclear magnetic resonance spectroscopy of viscous liquids, J. Mag. Res. 250, 1-6 (2015); (DOI: 10.1016/j.jmr.2014.10.012)
  • Paul J. Ganssle, Hyun D. Shin, Scott J. Seltzer, Vikram S. Bajaj, Micah P. Ledbetter, Dmitry Budker, Svenja Knappe, John Kitching, and Alexander Pines, Ultra-Low-Field NMR Relaxation and Diffusion Measurements Using an Optical Magnetometer, Angew. Chem. Int. Ed. 53, 1 – 6 (2014)
  • M. Emondts, M. P. Ledbetter, S. Pustelny, T. Theis, B. Patton, J. W. Blanchard, M. C. Butler, D. Budker, and A. Pines, Long-lived heteronuclear spin-singlet states, Phys. Rev. Lett. 112, 077601 (2014); arXiv:1310.1291
  • Thomas Theis, John W. Blanchard, Mark C. Butler, Micah P. Ledbetter, Dmitry Budker, Alexander Pines, Chemical analysis using J-coupling multiplets in zero-field NMR, Chem. Phys. Lett. (2013),
  • Review article: Micah P. Ledbetter and Dmitry Budker, Zero-field nuclear magnetic resonance, Physics Today 66(4) April 2013, pp. 44-49.
  • Mark Butler, Gwendal Kervern, Thomas Theis, Micah Ledbetter, Paul Ganssle, John Blanchard, Dmitry Budker, and Alexander Pines, Parahydrogen-induced polarization at zero magnetic field, J. Chem. Phys. 138, 234201 (2013)
  • Mark C. Butler , Micah P. Ledbetter , Thomas Theis , John W. Blanchard , Dmitry Budker, and Alexander Pines, Multiplets at zero magnetic field: The geometry of zero-field NMR, J. Chem. Phys. 138, 184202 (2013); doi: 10.1063/1.4803144
  • John W. Blanchard, Micah P. Ledbetter,Thomas Theis, Mark C. Butler, Dmitry Budker, and Alexander Pines, High-Resolution Zero-Field NMR J-Spectroscopy of Aromatic Compounds,
    J. Am. Chem. Soc., 135 (9), pp 3607–3612 (2013)
  • Johannes Colell, Pierre Türschmann, Stefan Glöggler, Philipp Schleker, Thomas Theis, Micah Ledbetter, Dmitry Budker, Alexander Pines, Bernhard Blümich, and Stephan Appelt, Fundamental Aspects of Parahydrogen Enhanced Low-Field Nuclear Magnetic Resonance, Phys. Rev. Lett. 110, 137602 (2013)
  • D. Budker, M. P. Ledbetter, S. Appelt, L. S. Bouchard, and B. Wojtsekhowski, Polarized nuclear target based on parahydrogen induced polarization, NIM A, 694, 246–250 (2012); arXiv:1203.2712
  • Micah Ledbetter, Szymon Pustelny, Dmitry Budker, Michael Romalis, John Blanchard, and Alexander Pines, Liquid-state nuclear spin comagnetometers, Phys. Rev. Lett. 108(24), 243001 (2012); arXiv:1201.4438
  • Thomas Theis, Micah P. Ledbetter, Gwendal Kervern, John W. Blanchard, Paul Ganssle, Mark C. Butler, Hyun D. Shin, Dmitry Budker, and Alexander Pines, Zero-field NMR enhanced by parahydrogen in reversible exchange,J. Am. Chem. Soc., 134(9), pp 3987–3990 (2012); Article ASAP, DOI: 10.1021/ja2112405
  • Micah Ledbetter, Thomas Theis, John Blanchard, Hattie Ring, Paul Ganssle, Stephan Appelt, Bernhard Bluemich, Alex Pines, and Dmitry Budker, Near-zero-field nuclear magnetic resonance, Phys. Rev. Lett. 107, 107601 (2011); See accompanying Physics Synopsis; arXiv:1107.1706
  • David J. Michalak, Shoujun Xu, Thomas J. Lowery, C. W. Crawford, Micah Ledbetter, Louis-S. Bouchard, David E. Wemmer, Dmitry Budker, and Alexander Pines, Relaxivity of Gadolinium Complexes Detected by Atomic Magnetometry, Magnetic Resonance in MedicineDOI: 10.1002/mrm.22811, (2011)
  • Thomas Theis, Paul Ganssle, Gwendal Kervern, Svenja Knappe, John Kitching, Micah Ledbetter, Dmitry Budker, Alex Pines, Parahydrogen enhanced zero-field nuclear magnetic resonance; Nature Physics doi:10.1038/nphys1986 (May 1, 2011); arxiv:1102.5378
  • M.P. Ledbetter, C.W. Crawford, A. Pines, D.E. Wemmer, S. Knappe, J. Kitching, and D. Budker, Optical detection of NMR J-spectra at zero magnetic field, Journal of Magnetic Resonance 199 (2009) 25–29; arXiv:0901.4069
  • C. W. Crawford, Shoujun Xu, Eric J. Siegel, Dmitry Budker, and Alexander Pines, Fluid-flow characterization with nuclear spins without magnetic resonance, Applied Physics Letters 93(9), 092507 (2008).
  • Shoujun Xu, Elad Harel, David J. Michalak, Charles W. Crawford, Dmitry Budker, and Alexander Pines, Flow in porous metallic materials: a magnetic resonance imaging study, Journal of Magnetic Resonance Imaging 28, 1299-1302 (2008).
  • Shoujun Xu, C. W. Crawford, Simon Rochester, Valeriy Yashchuk, Dmitry Budker, and Alexander Pines, Submillimeter-resolution magnetic resonance imaging at the Earth’s magnetic field with an atomic magnetometer, Phys. Rev. A78(1), 013404 (2008). This paper is also available from the Virtual Journal of Biological Physics Research.
  • F. Verpillat, M. P. Ledbetter, D. Budker, S. Xu, D. Michalak, C. Hilty, L.-S. Bouchard, S. Antonijevic, and A. Pines, Detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor; Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0712129105,
  • M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, Zero-field remote detection of NMR with a microfabricated atomic magnetometer, Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0711505105
  • S. Xu, S. M. Rochester, V. V. Yashchuk, M. H. Donaldson, and D. Budker, Construction and applications of an atomic magnetic gradiometer based on nonlinear magneto-optical rotation, Rev. Sci. Instrum. 77, 083106 (2006).
  • S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker, and A. Pines, Magnetic resonance imaging with an optical magnetometer, Proc. Nat. Acad. Sci. (USA), 10.1073/pnas.0605396103 (2006); see also an article about this work in Chemical&Engineering News, Berkeley Lab Research News, and MIT Technology Review
  • V. V. Yashchuk, J. Granwehr, D. F. Kimball, S. M. Rochester, A. H. Trabesinger, J. T. Urban, D. Budker, and A. Pines, Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry, Phys. Rev. Lett.93(16), 160801 (2004); physics/0404090.
  • D. Budker, D. F. Kimball, S. M. Rochester, J. T. Urban, Alignment-to-orientation conversion and nuclear quadrupole resonance, Chem. Phys. Lett.378(3-4), 440-448 (2003).

Condensed-matter EDM experiments

  • D. Budker, The Universe in a solid design, Nature Materials 9, 608-609 (2010)
  • L.-S. Bouchard, A. O. Sushkov, D. Budker, J. J. Ford, A. S. Lipton, Nuclear-spin relaxation of 207Pb in ferroelectric powders, Phys. Rev. A 77(2), 022102 (2008);
  • D. Budker, S. K. Lamoreaux, A. O. Sushkov, and O. P. Sushkov, On the sensitivity of condensed-matter P- and T-violation experiments, Phys. Rev. A73, 022107 (2006); cond-mat/0511153

Atomic spectroscopy at low temperatures; electro-optics of cryogenic liquids

  • A. O. Sushkov, D. Budker, Production of long-lived atomic vapor inside high-density buffer gas, Phys. Rev. A77, 042707 (2008) (
  • A. O. Sushkov, E. Williams, V. V. Yashchuk, D. Budker, and S. K.Lamoreaux, Kerr effect in liquid helium at temperatures below the superfluid transition, Phys. Rev. Lett.93, 153003 (2004); physics/0403143
  • V.V. Yashchuk, A.O. Sushkov, D. Budker, E.R. Lee, I.T. Lee, M.L. Perl, Production of dry powder clots using a piezoelectric drop generator; Rev. Sci. Instr.73(6), 2331 (2002).

Frequency-comb spectroscopy

J. E. Stalnaker, S. L. Chen, M. E. Rowan, K. Nguyen, T. Pradhananga, C. A. Palm, and D. F. Jackson Kimball, Velocity-selective direct frequency-comb spectroscopy of atomic vapors, Phys. Rev. A86, 033832 (2012); arXiv:1206.0999

Spectroscopy of actinium

  • Ke Zhang, Dominik Studer, Felix Weber, Vadim M. Gadelshin, Nina Kneip, Sebastian Raeder, Dmitry Budker, Klaus Wendt, Tom Kieck, Sergey G. Porsev, Charles Cheung, Marianna S. Safronova, Mikhail G. Kozlov, Detection of missing low-lying atomic states in actinium, arXiv:2005.03713 (2020)

Spectroscopy of samarium

Spectroscopy of silver

  • T. Karaulanov, B. K. Park, D. Budker, and A. O. Sushkov, Pressure broadening and shift of D1 line of Ag by He, Ar and N2, Phys. Rev. A86, 014503 (2012); arXiv:1201.3430

Spectroscopy of barium and xenon

  • L. Bougas, G. E. Katsoprinakis, D. Sofikitis, T. P. Rakitzis, P. C. Samartzis, T. N. Kitsopoulos, J. Sapirstein, D. Budker, V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Stark shift and parity non-conservation for near-degenerate states of xenon, Phys. Rev. A 89, 042513 (2014); arXiv:1403.4717
  • M. G. Kozlov, D. Budker, and D. English, Hyperfine-interaction- and magnetic-field-induced Bose-Einstein-statistics suppressed two-photon transitions, Phys. Rev. A 80(4), 042504 (2009), arXiv:0907.3727
  • C.-H. Li and D. Budker, Polarization dependent photoionization cross-sections and radiative lifetimes of atomic states in Ba, Phys. Rev. A, 74, 012512 (2006), physics/0602189
  • C.H. Li, S.M. Rochester, M.G. Kozlov, and D. Budker, Unusually large polarizabilities and “new” atomic states in Ba, Phys. Rev. A69, 042507 (2004), physics/0307060 (this is a more detailed version than the PRA)

Tests of quantum statistics


This is a picture (taken by Damon English) of a spot pattern of a dye-laser beam (556 nm) transmitted through a symmetric spherical cavity with mirror separation adjusted to a “magic” value with N=11. Please read the two papers above to find out more.

Blue Light

  • Alexander M. Akulshin, Nafia Rahaman, Sergey A. Suslov, Dmitry Budker, and Russell J. McLean,  Spiking dynamics of frequency up-converted field generated in continuous-wave excited rubidium vapours, Journal of the Optical Society of America B 37(8), 2430-2436 (2020);  arXiv:2003.06149

  • Alexander M. Akulshin, Dmitry Budker, and Russell J. McLean, Parametric wave mixing enhanced by velocity insensitive two-photon excitation in Rb vapour, Journal of the Optical Society of America B34(5), 1016-1022 (2017), arXiv:1701.06015
  • Alexander Akulshin, Dmitry Budker, and Russell McLean, Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapours, Optics Letters 39(4), 845-848 (2014); arXiv:1311.0071
  • Alexander Akulshin, Dmitry Budker, Brian Patton, and Russell McLean, Nonlinear processes responsible for mid-infrared and blue light generation in alkali vapours, arXiv:1310.2694
  • Alexander Akulshin, Christopher Perrella, Gar-Wing Truong, Andre Luiten, Dmitry Budker, and Russell McLean, Linewidth of collimated wavelength-converted emission in Rb vapours, Applied Physics B, (2014) DOI 10.1007/s00340-014-5823-0; arXiv:1301.7117v2

Four-Wave Mixing and Mirrorless Lasing

  • D. Antypas, O. Tretiak, D. Budker, and A. Akulshin, Polychromatic, continuous-wave mirrorless lasing from monochromatic pumping of cesium vapor, Optics Letters 44(15), 3657-3660 (2019), arXiv:1905.06997arXiv:1905.06997
  • Aram Papoyan, Svetlana Shmavonyan, Aleksandr Khanbekyan, Hrayr Azizbekyan, Marina Movsisyan, Guzhi Bao, Dimitra Kanta, Arne Wickenbrock, and Dmitry Budker, Evidence for degenerate mirrorless lasing in alkali metal vapor: forward beam magneto-optical experiment, arXiv:1811.02326 (2018)
  • Demetrious T. Kutzke, Owen Wolfe, Simon M. Rochester, Dmitry Budker, Irina Novikova, and Eugeniy E.Mikhailov, Tailorable Dispersion in a Four-Wave Mixing Laser, Optics Letters42(14), 2846-2849 (2017); arXiv:1705.02960
  • Eugeniy E. Mikhailov, Jesse Evans, Dmitry Budker, Simon M. Rochester, and Irina Novikova, Four-wave mixing in a ring cavity, Four-wave mixing in a ring cavity, Opt. Eng. 53(10), 102709 (2014); arXiv:1404.4650
  • Nathaniel B. Phillips, Irina Novikova, Eugeniy E. Mikhailov, Dmitry Budker, and Simon Rochester, Controllable steep dispersion with gain in a four-level N-scheme with four-wave mixing, Journal of Modern Optics 60(1), 64-72 (2013); arXiv:1205.2567


Soft skills

  • Work in progress: Dmitry Budker and Andreas Trabesinger, Advise for Poster (IT)
  • Eleni Kapnisti-Abedini and Dmitry Budker, When the lecture and the prize are in error (some common English mistakes by German-speaking academics), pdf (Feb. 2020)

  • D. Budker, Some rules of good scientific writing, Berkeley Scientific Journal12(2), Article 11, (2009); physics/0608246; reprinted in Postscripts 6(40), 2016

  • Dmitry Budker and Derek Jackson Kimball, Paper Craft, Nature 529, 427-428 (2016) doi:10.1038/nj7586-427a; a non-sterilized authors’ version of this article entitled “Rules for collaborative scientific writing” can be found here: arXiv:1607.02942

Miscellaneous Papers